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By means of similarity principles an analytical solution is constructed for the develop- 
ment of the linear flow field due to the instantaneous application of a constant point 
force in an infinite liquid. If the force is applied at the origin 0 and if r denotes distance 
from 0, v denotes the coefficient of kinematic viscosity of the fluid and t the time 
from the application of the force, the solution constructed exhibits the following 
features. Initially the flow field set up has a dipole structure with centre at 0 and axis 
along the direction of the impressed force. At a station r this dipole structure persists 
so long as 4vt 4 9-2. In an axial cross-section the field lines form two sets of closed loops 
about two stagnation points in the equatorial plane. The stagnation points occur a t  
r = 1*76(vt)* and thus propagate to infinity with speed 0.88(v/t)*. The steady state 
is reached algebraically. 

1. Introduction 
The steady-state flow field generated by point-force singularities has been studied 

for some time. The linear field or Stokeslet has been studied with various boundary 
conditions, especially recently, in connexion with various biological applications; for 
numerous references and applications in this field see Lighthill (1976). Lighthill (1978, 
$4.7)  also suggested that in ultrasonics the attenuated energy of an acoustic beam 
generates a mean force that drives a velocity field, known as the ‘sonic’ wind, and 
thus when the acoustic power output of the beam is large the ‘sonic’ wind field re- 
sembles that of the classical Landau-Squire momentum jet. 

There are not many solutions describing the transient state of these fields but 
recently Sozou & Pickering (1977) investigated the development of the flow field due 
to the instantaneous application of a constant point force Fo a t  the origin 0 in an 
infinite fluid. They formulated the problem in terms of the dimensionless parameter 
A = (vt)*/r and showed that ‘initially’, i.e. when A < 1, the flow field has a dipole-like 
structure with centre at  0 and axis along the direction of the impressed force. As 
the parameter h increases the nonlinear terms become important and the flow field 
develops, becoming asymmetric relative to the equatorial plane of the original dipole. 
In an axial cross-section the flow field consists of two sets of closed streamlines that 
propagate to infinity and when F, is increased the asymmetry and speed of eddy 
propagation are also increased. Eventually the flow field is transformed into that of 
the Landau-Squire momentum jet. 

The solution constructed by Sozou & Pickering is a numerical solution, apart from 
the initial development stage. This initial state, together with the steady-state 
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solution, suggests that the important limiting case of a very weak force, i.e. the linear 
model, possesses an analytic solution. This solution turns out to be very simple, yet it 
readily illustrates the various features of the development of the flow field, albdit 
without the asymmetry that characterizes the nonlinear regime, and gives a lower 
limit to the speed of eddy propagation to infinity. This solution, which complements 
the numerical solution of the nonlinear problem, is considered below. 

2. Formulation and solution of the problem 
We consider a viscous incompressible fluid occupying the whole space which is 

suddenly subjected to a constant force F, applied a t  the origin 0 along the axis 8 = 0 
of a spherical polar co-ordinate system ( r ,  8,#).  The flow field generated will obviously 
be symmetrical about the axis 6’ = 0,  T .  We shall make use of a stream function @ 
and note that its steady-state form, say @s, is given by 

@s = Ar(l  -p2) ,  ( 1 )  

where A = F0/(8nvp), p = cos8 and p is the fluid density. Also it was shown by 
Sozou & Pickering that the initial form of @, say @i, which is valid when the parameter 
y = r/[Z(vt)*] satisfies the condition y + 1, may be approximated by 

$i = Ar(l-p2)/(2y2) .  (2) 

@ = Ar(1 - rU2)g(r) .  (3) 

Equations (1) and (2) suggest a possible solution of the form 

In  terms of @ the velocity field v is given by 

and in view of (3) 
v = Ar-l[2pg, - ( 1  -p2)* (g + yg‘), 01. 

(4) 

(5) 

The linear momentum equation, except at the origin, is 

av/at = - p-1 vp + V V ~ V ,  (6) 

where p denotes the fluid pressure. Equations ( 1 )  and (6) [actually the curl of (6)] 
show that the solution of our problem can also be constructed by means of Laplace 
transforms, i.e. by setting @ = A ( l  -pz) G(r,  t ) .  Here, however, we shall proceed with 
our similarity approach. 

On dimensional grounds 
p = Avph(pu, 7 ) / r 2 .  (7 )  

On taking the curl of (6) and making use of (5), after some algebra, we obtain 

where 
f” = 2(?/-1- q 2 ) f f ,  

f = rpgff + 2yg’ - 2g. 

The fluid vorticity V x v is related to f by 

V x v = [ O , O ,  - A ( l  - , ~ ~ ) Z r - ~ f ] .  (10) 
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FIGURE 1 .  Values of g (continuous curve) and - f (broken curve) as functions of r ] .  

Initially, i.e. as t +- 0 and thus 7 --f 00, the vorticity and velocity fields are zero and 
therefore 

f (a)  = 0) g(0O) = 0. (11), (12) 

g(0) = 1. (13) 

The steady-state solution ( t  = 00, 7 = 0) requires that 

The solutions of (8) and (9) that satisfy (1 1)-( 13) are 

The function g was constructed by noting that 7-2 is a solution for the complementary 
function of (9) and then setting g = 7-%(7). Some repeated integrals were performed 
by reversing the order of integration. 

When 7 -+ 00, (14) implies that f N 0 and (3) and (15) imply that 

Ar F t  
27 47rp r @ = -2 (1-pZ) = 0 - (1-pZ). 

Thus at  the initial stage (7 $ 1) the flow field is irrotational and has a dipole-like 
structure with axis along the direction of the impressed force, as was shown by SOZOU 
& Pickering. Our equation (16) is identical to equation (32) of the paper by SOZOU 8~ 
Pickering, where it was shown that in the nonlinear regime the dipole-like structure 
holds when 7 1 and FOP < 4npr4. 

It can easily be shown from (14) and (15) that as t + co and, therefore, 7 -+ 0 

f 2: - 2 + 8y3/(3nt), g 21 1 - 47/(3n&) + 4r3/( 157~4)) (18) 

i.e. the steady state is reached algebraically. 
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It can also be shown, from (14) and (15), that the functions - f(y) and g(y) are 
monotonically decreasing functions of y. Details of the values of these functions are 
shown in figure 1. We note, however, that 

q? = 2A(vt)*(l-,u2)yg. (20) 

It can easily be shown from (14) and (19) that for a given t the maximum value of the 
vorticity occurs at y = 0, i.e. a t  the origin as might be expected. Also 

exp(-z2)dz-rexp(-y2) 

The right-hand side of (21) is positive for y < 1 and negative for y 9 1, i.e. yg has a 
maximum, say at  y = q0. It then follows from (20) that, for a given t, q? has a maximum 
at ,u = 0, y = yo. The point ,u = 0, r = 2y0(vt)* i s  a stagnation point and the stream- 
lines form closed loops about it. The value of y that makes (21) zero is given by 
yo 2: 0.88. As the flow field develops this point propagates to infinity with a speed 
drldt  = yov*/t*. Streamlines of the flow field for various values of the parameter 
T = (vt)*/L, where L is a characteristic length, are shown in figure 2. The general 
development of this flow field is similar to that of the nonlinear case, considered by 
Sozou & Pickering, but in the latter regime there is an asymmetry about the plane 
,u = 0. It was shown, numerically, by these authors that if the maximum value of $ 
occurs at (yo, po) then yo and ,uo are larger the larger the applied force; that is, if Fo 
is increased, the speed of eddy propagation to infinity and the flow-field asymmetry 
are also increased. The values yo = 0.88 and ,uo = 0 that correspond to the linear case 
represent the lower limits of yo and ,uo and correspond to the case Fo+ 0. The corres- 
ponding values of (yo, ,uo) for the cases Fo = 4-61v2p, 3 4 . 7 7 ~ ~ ~  and 1 5 6 . 3 2 ~ ~ ~  are (0.90, 
0.05), (0.94, 0.25) and (1.28, 0.64). 

On substituting (5) and (7)  in (6), using (8), (9), (14) and (15), and equating the radial 
and transverse components on the two sides of the resulting equation, after some 
algebra we obtain 

Hence h = 2p and 
2 h - ~ h ,  = 4 ~ ,  h, = 2. (221, (23) 

P = F0p/(4nr2), (24) 

i.e. the pressure field is set up instantaneously. Equation (24) was also obtained by 
Sozou & Pickering as the initial pressure of the developing flow field. In  that study, 
however, as t increased and the nonlinear terms became more significantp was modified 
until it reached its nonlinear steady-state form. 

It can be shown, by considering the linear momentum of the fluid in a closed surface 
surrounding the origin, that the solution constructed above represents the flow field 
due to the application of a constant point force Fo at 0 in the direction 8 = 0. 

Since completing this work it has come to our notice that Happel & Brenner (1965, 
Q 3.4) give expressions in Cartesian co-ordinates, derived by Burgers some 40 years 
ago, for working out the velocity field considered above. We note that, for the special 
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FIQURE 2. Streamlines of the developing flow field in a meridian plane for various values of the 
parameter T = (v t )* /L ,  where L is a characteristic length. (a)  T = 0.0625, ( b )  T = 0.25, ( c )  T = 1 
and ( d )  T = 00. The numbers on the curves are values of SOOrrvpfi/F,,. The distances along the 
axes are in units of L. 

case considered here, the Burgers approach and expressions [Happel & Brenner 1965, 
equations (3-4.26) to (3-4.28) and (3-4.39)] are more complicated than the method 
and corresponding expressions presented above, and do not easily reveal the general 
structure of the flow field being set up. Happel & Brenner's 9, which here we shall 
denote by Y in order to avoid confusion with our stream function, is given by their 
equation (3-4.39) as a double integral. We have transformed this into the single 
integral 
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It can easiIy be shown that as t --f 00 and, therefore, r/ -+ 0 this expression reduces to 

r r3 
Y = r  1-- + - . . .] [ 3(7lvt)8 120nt(vt)% 

Also, as t -+ 0 and, therefore, r/ -+ co, apart from an additive term 4(vt)&/d, (25) may be 
approximated by 

Y N -2vtlr. 

Thus the coefficient of the third term of Happel & Brenner’s equation (3-4.40) and 
the sign of the right-hand side of their equation (3-4.41) are wrong. An indication of 
the accuracy of (26) is provided by working out for large t the axial velocity on p = 1.  
Equations (5) and (18) and also (26) [instead of their equation (3-4.40)] and their 
equation (3-4.28) withF, = Fu = 0, F, = Fo, x = y = 0 andz = r give the same answer. 
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